TMUA Mock Paper 2 20 Questions in the style of a TMUA Paper 2 75 Minutes No calculator allowed Enjoy! (By yotta)

Q1. Which of these statements is true?

(A) $\sqrt{361}$ is irrational

(B)
$$\sqrt{x^2} = x$$
 for all real x

(C)
$$f(x) = 3x^2 - x + 5x^{\frac{1}{2}} + 1$$
 is a polynomial function

- (D) $\frac{195}{13}$ is an integer
- (E) 2+2=5

$$(\mathbf{F}) \qquad \ln(-1) = \pi$$

Q2. Which of these statements is true for positive integers n: 1. n is prime if n = 6k + 1 or n = 6k - 1 for some integer k 2. n is prime only if n = 6k + 1 or n = 6k - 1 for some integer k

- (A) Neither
- (B) 1 only
- (\mathbf{C}) 2 only
- (D) Both 1 and 2

Q3. Which of these statements is true about x = 21222324252627:

- 1. x can be written as $p^2 + q^2$ where p and q are 2 distinct positive integers 2. x can be written as $p^2 - q^2$ where p and q are 2 distinct positive integers 3. x can be written as p^2q^6 where p and q are 2 distinct positive integers
- (A) None
- **(B)** 1 only
- (\mathbf{C}) 2 only
- (D) 3 only
- (E) 1 and 2 only
- (\mathbf{F}) 1 and 3 only
- (\mathbf{G}) 2 and 3 only
- (H) 1, 2 and 3

Q4. f(x) is a function defined for all real x. Here are 3 statements:
J: f(3) = 1, and f(5) = -2
K: f(x) = 0 has exactly 3 solutions in the interval 3 < x < 5
L: f(x) = 0 has an odd number of solutions in the interval 3 < x < 5 Here are 3 more statements:
R: K is necessary for J
S: K is sufficient for J
T: L is necessary for J
Which of statements R, S and T are true?

(A)	None
(B)	R only
(C)	S only
(D)	T only
(E)	R and S only
(\mathbf{F})	R and T only
(G)	S and T only
(H)	R, S and T

Q5. Find the sum of the x-coordinates of the points of intersections of

$$y = (\sqrt{x} - 3)(\sqrt{x} + 3)$$

and

$$|x| = \frac{y+20}{3}$$

(A)	There are no points of intersection

- **(B)** -11.75
- (C) -3.5
- (D) -2.75
- **(E)** 0
- **(F)** 2.75
- (G) 5.5
- **(H)** 15.25

- **Q6.** f(x) is a polynomial function defined for all real x. **Statement P:** f'(5) = 0 **Statement Q:** There is a turning point at x = 5Which option is true?
 - (A) P is neither necessary nor sufficient for Q
 - (B) P is necessary but not sufficient for Q
 - (C) P is sufficient but not necessary for Q
 - (D) P is necessary and sufficient for Q

Q7. A, B and C are three points on a regular *n*-sided polygon, where $n \ge 3$. Let O be the centre of the circle that has A, B and C on its circumference. In radians, $\angle AOB = \frac{5}{6}\pi$ and $\angle BOC = \frac{2}{5}\pi$. Then n is necessarily a multiple of k. What is the largest value of k such that this statement is true?

(A)	240
(B)	120
(C)	60
(D)	30
(E)	12
(F)	6
(G)	5

- **Q8.** Find a counterexample, if it exists, to the statement: $\int_0^1 f(x) dx$ is equal to the area enclosed by f(x), the x-axis, x = 0 and x = 1 if f(x) is defined for $0 \le x \le 1$
 - (A) $f(x) = (x-2)^2$
 - **(B)** $f(x) = (\sin(x) + 1)(\sin(x) 1)$
 - (C) $f(x) = \ln(x)$
 - **(D)** f(x) = 1 x

(E)
$$f(x) = \cos(x)$$

- (F) The statement is incorrect, but none of the above are counterexamples
- (G) The statement is correct, so none of the above are counterexamples

Q9. It is given that $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$. Here is an attempt to prove 0 = 1:

- 1. Let $u = \frac{1}{x}$ and $\frac{dv}{dx} = 1$ 2. $\frac{du}{dx} = -\frac{1}{x^2}$ and v = x3. $\int \frac{1}{x} dx = 1 + \int \frac{1}{x} dx$ 4. $\int \frac{1}{x} dx = 1 + \int \frac{1}{x} dx$. Therefore, 0 = 1. QED.
- (A) The proof is incorrect, and the first error is on line 1.
- (B) The proof is incorrect, and the first error is on line 2.
- (C) The proof is incorrect, and the first error is on line 3.
- (D) The proof is incorrect, and the first error is on line 4.
- (E) The proof is fully correct.

Q10. Find the full range of values of the real number k such that

$$\ln(x)^2 + \ln\left(\frac{1}{x^6}\right) + k = 0$$

has exactly 2 real solutions.

- (A) k > 9
- **(B)** *k* < 9
- (C) k > 0
- (D) k < 0
- (E) 0 < k < 9
- (F) k < 0, k > 9

- **Q11.** A *repunit* is an integer consisting of only ones. Examples: 1111 or 1 or 11111111. Complete the sentence: A repunit with n digits (n > 0) is divisible by 7 if and only if...
 - (A) n is a multiple of 3
 - (B) n is a multiple of 6
 - (C) n is a multiple of 7
 - (D) n is a multiple of 12
 - (E) n is of the form 4k + 6 where k is a non-negative integer
 - (F) n is of the form 2k + 4 where k is a non-negative integer

Q12. $f(x) = 5x^2 - x^3 - 7x + 3$, and $0 \le x \le 4$. Find the maximum value of f(x) in this range.

- (A) $\frac{32}{27}$
- **(B)** 3
- (C) 0
- **(D)** 12
- (E) $\frac{46}{27}$
- (F) $\frac{46}{3}$
- **(G)** −4

- Q13. A word is *good* if and only if it consists of no letters other than A,B,C,D. Examples: AABDC or CCCB or AB or ABDBCDA. How many 5-letter *good* words have at least one A and at least one C? (order matters, so ABCDA and ADCBA are distinct)
 - **(A)** 0
 - **(B)** 32
 - (C) 160
 - **(D)** 256
 - **(E)** 570
 - **(F)** 813
 - (G) 1024
 - **(H)** 1280

Q14. Which of these numbers is the smallest?

(A) ln(9)

- (B) $\pi^{\log_3(2)}$
- (C) $\frac{1337}{668}$
- **(D)** $-2\cos(3.14)$
- (E) $\sqrt[3]{5}$
- (F) $3^{\sin(\frac{25\pi}{6})}$

- Q15. Which of these statements is true for two positive integers, p and q, where p is prime?1. The highest common factor of p and q is 1 if q is also prime.
 - **2.** pq has exactly four factors
 - (A) Neither
 - (B) 1 only
 - (C) 2 only
 - (D) Both 1 and 2

- **Q16.** Of the following 7 statements about numbered lamps in a factory, exactly one of them is true. Which one is the true statement? [n is a positive integer]
 - (A) If n is even, lamp n is switched on.
 - (B) If n is odd, lamp n is switched off.
 - (C) If n is even, lamp n is switched off.
 - (D) If n is odd, lamp n is switched on.
 - (E) If lamp n is switched on, then n is even.
 - (F) If lamp n is switched off, then n is odd.
 - (G) If lamp n is switched off, then n is even.

Q17. For how many of these functions is f'(x) strictly increasing for all real x?

- **1.** $\ln(x)$
- **2.** sin(x)
- **3.** $-\ln(x)$ **4.** x^2
- **5.** *x*³
- **(A)** 0
- **(B)** 1
- (C) 2
- **(D)** 3
- **(E)** 4
- **(F)** 5

- **Q18.** All 720 permutations of the word "NUMBER" are generated, and arranged in alphabetical order. In what position is the word "NUMBER"
 - (A) 383rd
 - **(B)** 385th
 - (C) 468th
 - **(D)** 469th
 - (E) 487th
 - (F) 490th
 - (G) 618th
 - (H) 622nd

- **Q19.** A *squarefree* integer is a positive integer which isn't divisible by the square of a prime. Which of these statements about squarefree integers is correct?
 - **1.** A squarefree integer with n prime factors has 2^n factors.
 - 2. The product of two squarefree integers is always squarefree
 - **3.** A squarefree integer cannot be a power of 36.

(A) None of them

- **(B)** 1 only
- (C) 2 only
- (D) 3 only
- (E) 1 and 2 only
- (\mathbf{F}) 1 and 3 only
- (G) 2 and 3 only
- **(H)** 1,2 and 3

$x^{2} + 6y + 10 = 0$ $3y^{2} + 6z + 5 = -1$ $40x - 5z^{2} = 70$		
(A)	4	
(B)	6	
(C)	10	
(D)	12	
(E)	14	
(F)	16	
(G)	No solution exists	

Q20. Solve these simultaneous equations to find the real numbers x, y and z. Hence find $x+y^2+z^3$.